Dynamically stabilized magnetic skyrmions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamically stabilized magnetic skyrmions

Magnetic skyrmions are topologically non-trivial spin textures that manifest themselves as quasiparticles in ferromagnetic thin films or noncentrosymmetric bulk materials. So far attention has focused on skyrmions stabilized either by the Dzyaloshinskii-Moriya interaction (DMI) or by dipolar interaction, where in the latter case the excitations are known as bubble skyrmions. Here we demonstrate...

متن کامل

Topological Quasiparticles: Magnetic Skyrmions

Magnetic skyrmions are topologically distinct spin textures and can be stable with quasi-particle like behavior, such that they can be manipulated with very low electric currents. This makes them interesting for extreme low-power information technologies [1], where data is envisioned to be encoded in topological charges, instead of electronic charges as in conventional semiconducting devices. U...

متن کامل

Baby Skyrmions stabilized by vector mesons

Recent results suggest that multi-Skyrmions stabilized by ω mesons have very similar properties to those stabilized by the Skyrme term. In this paper we present the results of a detailed numerical investigation of a (2+1)-dimensional analogue of this situation. Namely, we compute solitons in an O(3) σ-model coupled to a massive vector meson and compare the results to baby Skyrmions, which are s...

متن کامل

Dynamically stabilized pores in bilayer membranes.

Zhelev and Needham have recently created large, quasistable pores in artificial lipid bilayer vesicles. Initially created by electroporation, the pores remain open for up to several seconds before quickly snapping shut. This result is surprising, in light of the large line tension for holes in bilayer membranes and the rapid time scale for closure of large pores. We show how pores can be dynami...

متن کامل

Magnetic bilayer-skyrmions without skyrmion Hall effect

Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Communications

سال: 2015

ISSN: 2041-1723

DOI: 10.1038/ncomms9193